## Unprecedented Structures for PLi<sub>5</sub>, SLi<sub>4</sub>, and SLi<sub>6</sub>

## Colin J. Marsden

Department of Inorganic Chemistry, The University of Melbourne, Parkville, Victoria, 3052 Australia

Theoretical calculations have shown that PLi<sub>5</sub>, SLi<sub>4</sub>, and SLi<sub>6</sub> challenge conventional notions of molecular structure and bonding.

There has been recent interest in the theoretical exploration of lithium chemistry. While a formal analogy may be drawn between the ns1 electronic structures of H and Li, there are of course very substantial differences in their overall chemical behaviour. Stoicheiometries and structures have been reported for  $CLi_{6}$ , <sup>1</sup>  $OLi_{4}$ , <sup>2</sup> and  $SiLi_{4}$ <sup>3</sup> which bear no resemblance to analogous hydrogen-containing compounds. I now describe a theoretical study of some lithium derivatives of P and S. These compounds have not yet been considered in the literature, and their structures are predicted to be even more remarkable than those of their N and O counterparts. PLi5 has  $C_{4\nu}$  symmetry, SLi<sub>6</sub> has  $D_{3d}$  symmetry, but a definitive structural prediction is not yet possible for SLi<sub>4</sub>, which has almost degenerate  $C_{2\nu}$  and  $C_{3\nu}$  isomers. All three 'hyperlithiated' compounds are predicted to be thermodynamically stable both to atomisation and to loss of Li<sub>2</sub>, by substantial margins, but are probably less stable than the elements in their standard states.

Geometry optimisations were performed using the Gaussian 86 program<sup>4</sup> and the 3-21G(\*) basis. Vibrational frequencies were calculated with this basis from analytical SCF second derivatives for each stationary point located. Better estimates of final molecular energies were obtained with the nonstandard 6-31G(\*) basis (which does not contain d functions on Li) at theoretical levels up to MP4SDQ. The success of theoretical methods of this type in predicting molecular structures is impressive, and they give at least semiquantitatively useful estimates of reaction energies.<sup>5</sup> Geometrical parameters for the various stationary points of PLi<sub>5</sub>, SLi<sub>4</sub>, and SLi<sub>6</sub> are displayed in Figure 1. Absolute energies are reported in Table 1 and relative energies are presented in Table 2.

Two stationary points were located for PLi<sub>5</sub>. The  $C_{4\nu}$  isomer (1) is a true minimum, whose lowest vibrational mode is at 56 cm<sup>-1</sup> (a<sub>1</sub>), but the  $D_{3h}$  structure (2) has an e' imaginary bending motion at 50i cm<sup>-1</sup>, which is an in-plane motion of the equatorial atoms leading to (1) *via* a  $C_{2\nu}$  pathway. Isomer (1) is

slightly but consistently more stable than (2) at all levels of theory used here. All other phosphoranes studied to date, either by experimental or theoretical methods, have a trigonal



Figure 1. Optimized HF/3-21G(\*) geometries of isomers of PLi<sub>5</sub>, (1), (2); SLi<sub>4</sub>, (3)–(7); and SLi<sub>6</sub>, (8)–(11). Bond lengths in Å, angles in degrees.

| <b>Table 1.</b> Energies of PLi <sub>n</sub> and SLi <sub>n</sub> molecules (-ator | nic units) | ) |
|------------------------------------------------------------------------------------|------------|---|
|------------------------------------------------------------------------------------|------------|---|

|                  |               | Point<br>group  | 3-21G(*)//<br>3-21G(*) |          |            |            |            |            |            |
|------------------|---------------|-----------------|------------------------|----------|------------|------------|------------|------------|------------|
| Species          |               |                 |                        | Z.P.E.ª  | RHF/       |            | <br>MP3/   | MP4DQ/     | MP4SDQ/    |
| PLi <sub>3</sub> |               | $C_{3\nu}$      | 361.300 80             | 11.8(0)  | 363.07123  | 363.205 85 | 363.21480  | 363.21485  | 363.21761  |
| PLi <sub>s</sub> | (1)           | $C_{4v}$        | 376.136 69             | 18.1 (O) | 377.99601  | 378.164 42 | 378.175 37 | 378.17288  |            |
|                  | (2)           | $D_{3h}$        | 376.13535              | 17.0(2)  | 377.994 55 | 378.164 02 | 378.17461  | 378.171 76 |            |
| SLi <sub>2</sub> | ( )           | $D_{mh}^{sn}$   | 410,53778              | 8.1 (O)  | 412.474 34 | 412.60161  | 412.61192  | 412.61228  | 412.613 50 |
| SLi              | (3)           | $C_{3y}$        | 425,362.92             | 14.6(0)  | 427.388 82 | 427.54721  | 427.56331  | 427.564 59 | 427.56618  |
| 4                | (4)           | $C_{2\nu}$      | 425,361 62             | 13.9(1)  | 427.38738  | 427.54943  | 427.56476  | 427.56506  | 427.56674  |
|                  | (5)           | $C_{2\nu}$      | 425,36033              | 13.3(2)  | 427.38598  | 427.54867  | 427.563 85 | 427.563 98 | 427.565 58 |
|                  | 6             | $\tilde{T}_{d}$ | 425,358.85             | 12.5(3)  | 427.38296  | 427.54810  | 427.56171  | 427.56042  | 427.56192  |
|                  | $(\tilde{7})$ | $D_{Ab}$        | 425,34623              | 12.8(2)  | 427.37212  | 427.540 52 | 427.55524  |            |            |
| SLis             | (8)           | $D_{2d}$        | 440,151 87             | 21.0(0)  | 442.271 07 | 442,452 55 | 442.47613  | 442.48016  |            |
| 0                | (9)           | - 34<br>D24     | 440,14849              | 20.6(1)  | 442,268 44 | 442,450 57 | 442.474.05 | 442.47808  |            |
|                  | (10)          | $D_{2h}$        | 440.133.66             | 18.0(2)  | 442,253 56 | 442.441 96 | 442,464 51 | 442,467 30 |            |
|                  | (11)          | $D_{4h}$        | 440.111 41             | 22.5 (3) | 442.229 47 | 442.42621  | 442.447 80 |            |            |

<sup>a</sup> Zero-point vibrational energy, unscaled, in kJ mol<sup>-1</sup>, at HF/3-21G(\*). Numbers of imaginary vibrational frequencies are given in parentheses for each stationary point.

| Table 2. Relative energies and | binding energies of PLi <sub>n</sub> a | and $SLi_n$ molecules (kJ mol <sup>-1</sup> ). |
|--------------------------------|----------------------------------------|------------------------------------------------|
|--------------------------------|----------------------------------------|------------------------------------------------|

|                  |              | 3-21G(*)<br>//3-21G(*) | 6-31G(*)//3-21G(*) |        |        |        |         |  |
|------------------|--------------|------------------------|--------------------|--------|--------|--------|---------|--|
| Species          |              |                        | RHF/               | MP2/   |        | MP4DQ/ | MP4SDQ/ |  |
| PL <sub>15</sub> | (1)          | 0.0                    | 0.0                | 0.0    | 0.0    | 0.0    |         |  |
| -                | (2)          | 3.5                    | 3.8                | 1.1    | 2.0    | 2.9    |         |  |
| $\Delta_1^{a}$   | ( )          | -175.0                 | -153.5             | -201.6 | -190.4 | -176.9 |         |  |
| SĹi₄             | (3)          | 0.0                    | 0.0                | 5.8    | 3.8    | 1.2    | 1.5     |  |
|                  | (4)          | 3.4                    | 3.8                | 0.0    | 0.0    | 0.0    | 0.0     |  |
|                  | (5)          | 6.8                    | 7.5                | 2.0    | 2.4    | 2.8    | 3.0     |  |
|                  | (6)          | 10.7                   | 15.4               | 3.5    | 8.0    | 12.2   | 12.7    |  |
|                  | (7)          | 43.8                   | 43.8               | 23.4   | 25.0   |        |         |  |
| $\Delta_2^{b}$   | ~ /          | -146.7                 | -126.4             | -173.3 | -170.1 | -163.1 | -164.0  |  |
| SLi <sub>6</sub> | (8)          | 0.0                    | 0.0                | 0.0    | 0.0    | 0.0    |         |  |
| 0                | (9)          | 8.9                    | 6.9                | 5.2    | 5.5    | 5.5    |         |  |
|                  | (10)         | 47.8                   | 46.0               | 27.8   | 30.5   | 33.8   |         |  |
|                  | àń           | 106.2                  | 109.2              | 69.2   | 74.4   |        |         |  |
| $\Delta_3^{c}$   | < - <b>/</b> | -51.7                  | -41.8              | -56.0  | -54.4  | -63.9  |         |  |

<sup>a</sup> Energy of  $PLi_5$  compared to sum of ( $PLi_3 + Li_2$ ). <sup>b</sup> Energy of  $SLi_4$  compared to sum of ( $SLi_2 + Li_2$ ). <sup>c</sup> Energy of  $SLi_6$  compared to sum of ( $SLi_4 + Li_2$ ).

bipyramidal structure, apart from a class containing bidentate chelating ligands with internal ring systems.<sup>6</sup> Indeed, of all MX<sub>5</sub> species, where M is a main group element and X monodentate, only SbPh<sub>5</sub><sup>7</sup> and InCl<sub>5</sub><sup>2-8</sup> are known to have square pyramidal structures, and 'packing factors' may well be influential for these solid-state cases, since a trigonal bipyramidal structure is predicted<sup>9</sup> by *ab initio* methods for AlF<sub>5</sub><sup>2-</sup>.

The occupied valence orbitals for (1) are  $6a_1^{2}3e^47a_1^{2}8a_1^2$ , which may be contrasted with  $4a_1^{2}2e^45a_1^{2}1b_2^{2}$  in PH<sub>5</sub> if  $C_{4\nu}$ symmetry is imposed. Orbital  $8a_1$  in (1) is bonding between adjacent lithium atoms, but P–Li antibonding. Another  $C_{4\nu}$ stationary point for PLi<sub>5</sub> was found inadvertently, corresponding to the  $a_1^2 \rightarrow b_1^2$  HOMO  $\rightarrow$  LUMO excitation. This second  $C_{4\nu}$  state is a transition state, and lies 233 kJ mol<sup>-1</sup> above (1) at the 3-21G(\*)SCF level. PLi<sub>5</sub> is predicted to be substantially more stable than (PLi<sub>3</sub> + Li<sub>2</sub>), as reported in Table 2. The atomisation energy of PLi<sub>3</sub> is calculated to be 416 kJ mol<sup>-1</sup> [MP4DQ/6-31G(\*)//3-21G(\*)], but since solid phosphorus and metallic lithium lie some 820 kJ mol<sup>-1</sup> below (P<sub>(g)</sub> + 3 Li<sub>(g)</sub>), it is probable that PLi<sub>5</sub> is unstable relative to solid phosphorus and metallic lithium. However, its preparation is not necessarily precluded by thermodynamic instability.

No fewer than five different stationary points were located for  $SLi_4$ . Only one of these is a true minimum at 3-21G(\*). Interestingly, this isomer (3) has  $C_{3\nu}$  symmetry. I believe that there is no precedent for an MX<sub>4</sub> species to have a  $C_{3\nu}$  ground state. It is remarkable that three other isomers of  $SLi_4$  lie within 11 kJ mol<sup>-1</sup> of (3) at 3-21G(\*), especially given the enormous changes in molecular geometry evident in Figure 1. SLi<sub>4</sub> clearly has exceptional fluxional character. It should be noted that only one stationary point, of  $T_d$  symmetry, has been reported for  $OLi_{4}$ .<sup>2</sup> The relative energies of (3), (4), and (5) change as more exact theoretical methods are used (see Table 2). Isomer (4) is apparently stabilized over (3) by correlation effects, though since geometry optimisation was not undertaken with correlated wavefunctions this conclusion is tentative for the moment. Although it is not yet possible to predict with confidence which structure is adopted by SLi<sub>4</sub>, there can be no doubt that it is more thermodynamically stable than  $(SLi_2 + Li_2).$ 

Four different stationary points were located for SLi<sub>6</sub>, of which only one, (8), is a true minimum. Isomer (8) is the most stable isomer of SLi<sub>6</sub> at all levels of theory used here. I know of no other MX<sub>6</sub> molecule with a  $D_{3d}$  ground state, with the

probable exception of  $OLi_6^{10}$  for which vibrational frequencies have apparently not been calculated. The single  $D_{3h}$  imaginary vibrational frequency of 66i cm<sup>-1</sup> for (9) is an a" mode which rotates one 'eclipsed' Li<sub>3</sub> prismatic face relative to the other, to give the 'staggered'  $D_{3d}$  isomer (8).

The non-octahedral structure of SLi<sub>6</sub> may appear surprising, but can be traced to a Jahn–Teller distortion. Octahedral SLi<sub>6</sub> would have the valence orbital configuration  $4a_{1g}^{23}t_{1u}^{65}a_{1g}^{24}t_{1u}^{2}$ ; the 'extra' valence bonding  $a_{1g}$  and  $t_{1u}$ orbitals which are possible in SLi<sub>6</sub> but not in SH<sub>6</sub> involve Li 2p orbitals. SLi<sub>6</sub> is predicted to have significant thermodynamic stability compared to (SLi<sub>4</sub> + Li<sub>2</sub>), but no structure was found for SLi<sub>8</sub> lying below (SLi<sub>6</sub> + Li<sub>2</sub>). Inspection of Figure 1 shows that many of the structures reported here may be regarded as containing triangular Li<sub>3</sub><sup>+</sup> fragments. Note that the closest Li · · · Li separation is 2.803 Å in (8) and 2.972 Å in (3) compared to 3.055 Å in Li<sub>3</sub><sup>+</sup> (3-21G/SCF calculations).

While the theoretical methods used here work well for 'standard' molecules,<sup>5</sup> they may be less applicable to unusual cases. Preliminary MCSCF and MRCI calculations have revealed that while PLi<sub>3</sub> and SLi<sub>2</sub> are reasonably well described by a single reference calculation, the 'hyper-lithiated' species have more complex electronic structures with Hartree–Fock reference coefficients of about 0.93 (PLi<sub>5</sub>), 0.94 (SLi<sub>4</sub>), and 0.89 (SLi<sub>6</sub>). A multireference approach will therefore probably be necessary to give a definitive theoretical

description of these hyperlithiated compounds. Work is continuing in this area.

Received, 14th April 1989; Com. 9/01541H

## References

- 1 P. v. R. Schleyer, E.-U. Würthwein, E. Kaufmann, T. Clark, and J. A. Pople, J. Am. Chem. Soc., 1982, 104, 5839.
- 2 P. v R. Schleyer, E.-U. Würthwein, and J. A. Pople, J. Am. Chem. Soc., 1983, 105, 5930.
- 3 P. v. R. Schleyer and A. E. Reed, J. Am. Chem. Soc., 1988, 110, 4453.
- 4 M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. Defrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fleuder, and J. A. Pople, Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh, PA, 1987.
- 5 W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, 'Ab Initio Molecular Orbital Theory,' Wiley, New York, 1986.
- 6 R. A. Holmes, 'Penta Coordinated Phosphorus I,' Monograph 175, American Chemical Society, Washington, D.C., 1980, and references cited therein.
- 7 P. J. Wheatley, J. Chem. Soc., 1964, 3718.
- 8 D. S. Brown, F. W. B. Einstein, and D. G. Tuck, *Inorg. Chem.*, 1969, **8**, 14.
- 9 C. J. Marsden, to be submitted for publication.
- 10 P. v. R. Schleyer, 'New Horizons of Quantum Chemistry,' eds. P.-O. Löwdin and B. Pullman, Reidel, Dordrecht, The Netherlands, 1983, pp. 95-109.